
Sedona	Framework	
For	 those	 who	 understand	 Tridium’s	 Niagara	 Framework,	 understanding	 Sedona	 Framework	
would	be	trivial.	However,	the	market	for	Sedona	Framework	goes	beyond	the	tradi>onal	HVAC	
market	 that	Niagara	Framework	 serves.	 Sedona	Framework	 is	 intended	 to	provide	a	 complete	
development	environment	for	devices	with	limited	resources.	The	Java	environment	of	Niagara	
Framework	 requires	 resources	 well	 beyond	 the	 capability	 of	 small	 devices	 but	 much	 of	 the	
Niagara	 concepts	 have	 been	 transferred	 down	 to	 Sedona	 Framework	 thereby	 allowing	 small	
devices	to	execute	sophis>cated	control.	

Sedona	Workbench	
In	 order	 to	 understand	 how	 Sedona	 is	 being	 used,	we	 need	 to	 define	 some	 terms	 commonly	
used	 with	 either	 of	 the	 two	 Tridium	 Framework	 products.	 Sedona	 Workbench	 is	 PC-based	
graphical	user	interface	(GUI)	development	tool	that	is	used	to	develop	Sedona	applica>ons.	This	
connects	 to	 the	 ISMA	 Sedona	 Controllers	 (the	 target	 plaQorm)	 over	 IP/Ethernet.	 The	 Sedona	
Framework	 is	 comprised	 of	 kits	 that	 contain	 components;	 whereas	 components	 are	 used	 to	
implement	 Sedona	 applica>ons.	 Components	 have	 proper>es	 that	 can	 be	 shown	 on	 Property	
Sheets	and	can	be	interconnected	on	Wire	Sheets	using	virtual	wires.	The	user	opens	up	a	SOX	
(Sedona	protocol)	 session	on	Workbench	 to	 the	 controller.	Using	drag-and-drop	methodology,	
the	user	develops	a	control	scheme	by	interconnec>ng	components	and	by	assigning	proper>es	
to	 components.	 The	 final	 applica>on	 is	 stored	 on	 the	 controller	 and	 saved	 on	Workbench.	 A	
Sedona	 Virtual	 Machine	 (SVM),	 which	 permanently	 resides	 in	 the	 controller,	 executes	 the	
Sedona	 code	 sent	 over	 by	 Workbench.	 However,	 as	 the	 applica>on	 executes,	 the	 user	 can	
observe	the	execu>on	on	Workbench.	With	Workbench	disconnected,	the	applica>on	con>nues	
to	run	since	the	applica>on	is	stored	in	flash	memory	on	the	controller.	

Pale3e,	Kits,	and	Components	
Sedona	 Framework	 provides	 a	 PaleXe	 of	 kits,	 one	 of	 the	 more	 interes>ng	 kits	 is	 called	
iSMA_control	which	includes	a	group	of	components	similar	to	the	components	found	in	Niagara	
Framework.	Although	not	as	numerous,	the	Sedona	control	components	are	s>ll	very	powerful.	
There	 are	 three	 types	 of	 variables	 that	 can	 be	 operated	 upon	 –	 floa>ng	 point	 (float),	 binary	
(Boolean),	 and	 Integer	 (Int).	 For	 beXer	 understanding,	 the	 components	 in	 the	 control	 kit	 are	
shown	sub-divided	into	func>onal	groups.	

Conversion	Components	
Contains	8	components	that	mainly	convert	from	one	point	type	to	another.	

BooleanToFloat			� 	
BooleanToFloat	is	a	16	bit	Binary	to	Float	Encoder	Object.	

out			:=	Encoded	value	of	inputs,	with	bit15(MSB)	and	bit0(LSB)	
count	:=	Sum	of	the	inputs	that	are	ac>ve	

BooleanToPulse			 � 	
BooleanToPulse	is	a	simple	mono-stable	oscillator	object.	
	 out	:=	in	for	one	scan	cycle	on	the	rising	edge	of	in	

FloatToBoolean			� 	
FloatToBoolean	is	a	16-bit	Float	to	Binary	Decoder	Object.	
	 Outputs	(bit15-bit0)	:=	Decoded	value	of	input,	with	bit15(MSB)	and	bit0(LSB)		 	
	 overflow	:=	true	when	inNumeric	>	65535	

FloatToInteger			� 	
FloatToInteger	is	a	Float	to	32	bit	integer	(Integer)	Converter	Object.	
	 out				:=	in,	except	that	the	output	is	the	32-bit	integer	with	frac>onal	part	truncated.	

FloatToLong			� 	
FloatToLong	is	a	Float	to	64-bit	signed	integer	(Long)	Converter	Object.	
	 out			:=	in,	except	that	the	output	is	the	64-bit	signed	integer	with	frac>onal	part			
	 truncated.	

FloatToString			� 	
FloatToString	is	a	Float	to	String	(Buf)	Converter	Object.	
	 out			:=	in,	except	that	the	output	is	the	Buf(64)	with	frac>onal	part	truncated.		

IntegerToFloat			� 	
IntegerToFloat	is	a	32	bit	integer	(Integer)	to	Float	Converter	Object.	
	 out			:=	in,	except	that	the	output	is	the	float.	

LongToFloat			� 	
LongToFloat	is	a	64-bit	signed	integer	(Long)	to	Float	Converter	Object.	
	 out			:=	in,	except	that	the	output	is	the	float.	

Control	extensions	
As	needed,	you	can	add	control	extensions	 to	points	along	with	alarm	and	history	extensions.	
Control	 extensions	 perform	 addi>onal	 processing	 on	 a	 point's	 received	 value.	 There	 are	
rela>vely	few	types	of	control	extensions.		

DiscreteTotalizer			 ! 	
DiscreteTotalizer	accumulates	run>me	and	change	of	state	(COS)	count.	Extension	ac>ons	permit	
resemng	(zeroing)	the	run>me	and	COS	count.		

IntegerTotalizer			! 	
IntegerTotalizer	 accumulates	 integer	 total	 using	 hourly	 or	minutely	 totaliza>on.	 Extension	 has	
ac>on	to	reset	(zero)	total.		

NumericTotalizer			! 	
NumericTotalizer	accumulates	numeric	total	using	hourly	or	minutely	totaliza>on.	Extension	has	
ac>on	to	reset	(zero)	total.		
	 For	example,	a	totalizer	with	a	minutely	totaliza>on	interval	can	convert	an		 	
	 instantaneous	flow	reading	in	cubic	feet	per	minute	(cfm)	into	a	value	represen>ng	total		
	 cubic	feet	consumed.	

Demux	components	
Demux	objects	selects	one	of	two	outputs	to	receive	the	Input	value,	depending	on	the	value	of	
Boolean	select	Input.	The	value	of	the	other	Output	remains	unchanged.	

BooleanDemux			� 	
BooleanDemux	 object	 selects	 one	 of	 two	 outputs	 to	 receive	 the	 Input	 (Boolean)	 Value,	
depending	 on	 the	 value	 of	 the	 Boolean	 select	 Input.	 The	 value	 of	 the	 other	 Output	 remains	
unchanged.	

select					 out1														 									 out2	
false						 							in																	 													Previous-Value	
true						 							Previous-Value																in	

IntegerDemux			� 	
IntegerDemux	object	selects	one	of	two	outputs	to	receive	the	Input	(Integer)	Value,	depending	
on	the	value	of	the	Boolean	select	Input.	The	value	of	the	other	Output	remains	unchanged.	

select					 out1														 									 out2	
false						 							in																	 													Previous-Value	
true						 							Previous-Value																in	

NumericDemux			� 	
NumericDemux	 object	 selects	 one	 of	 two	 outputs	 to	 receive	 the	 Input	 (Numeric)	 Value,	
depending	 on	 the	 value	 of	 the	 Boolean	 select	 Input.	 The	 value	 of	 the	 other	 Output	 remains	
unchanged.	

select					 out1														 									 out2	
false						 							in																	 													Previous-Value	
true						 							Previous-Value																in	

Energy	components	
Energy	components	include	a	degree-days	calcula>on	object	as	well	as	various	objects	used	for	
electrical	 demand	 limi>ng.	 Addi>onal	 energy-saving	 func>ons	 are	 also	 represented	 as	
components.		

DegreeDays			� 	
DegreeDays	 provides	 degree	 day	 calcula>ons,	 based	 upon	 temperature	 received	 at	 the	 input	
Temperature	slot	and	values	of	various	other	proper>es.		

Defini>on	of	Degree	Days:	Degree	Days	 is	 a	 unit	 of	measure	 that	may	be	 expressed	 as	 either	
Hea>ng	Degree	Days	(HDD)	or	Cooling	Degree	Days	(CDD).	You	calculate	Degree	Days	by	taking	
the	 difference	 between	 the	 average	 temperature	 during	 a	 given	 >me	 period	 (month,	 season,	
year)	and	a	reference	point,	usually	65	degrees	Fahrenheit.		

Both	 cooling	 and	 hea>ng	 degree	 day	 values	 are	 available,	 including	 totalized	 values.	 A	 Reset	
Totals	ac>on	is	available	to	clear	(zero)	totalized	values.		

The	DegreeDays	component	includes	the	following	proper>es	and	one	ac>on:		
		 Unit	Select	:	This	is	used	to	set	the	units	of	the	Temp	In,	Min	Temp,	Max	Temp,	and		
	 Mean	Temp	proper>es.		
	 Base	Temperature	:	Specifies	the	base	temperature	used	in	the	degree-day	calcula>on.		
	 Input	Temperature	:	This	is	the	input	for	the	outside	air	temperature	used	in	the	degree-	
	 day	calcula>on.	Note:	If	this	input	is	not	valid	then	no	calcula>ons	will	be	done.		 	
	 Minimum	Temperature	:	The	minimum	temperature	recorded	for	the	current	day.		
	 Tested	and	set	on	each	calcula>on.		
	 Maximum	Temperature	:	The	maximum	temperature	recorded	for	the	current	day.		
	 Tested	and	set	on	each	calcula>on.		
	 Mean	Temperature	:	The	mean	temperature	recorded	for	the	previous	day.	Calculated		
	 when	the	day	changes.	Mean	Temp	=	(Max	Temp	+	Min	Temp)	/	2.0		
	 Cooling	Degree-day	:	This	is	the	cooling	degree-day	calculated	for	the	previous	day.		
	 Calculated	when	the	day	changes.		
	 Totalized	Cooling	Degree-days	:	This	is	the	totalized	cooling	degree-days	since	last	Reset		
	 Totals	ac>on	was	invoked.	Calculated	when	Cooling	Degree	Days	changes.		
	 HeaMng	Degree-day	:	This	is	the	hea>ng	degree-day	calculated	for	the	previous	day.		
	 Calculated	when	the	day	changes.		
	 Totalized	HeaMng	Degree-days	:	This	is	the	totalized	hea>ng	degree-days	since	last	Reset	
	 Totals	ac>on	was	invoked.	Calculated	when	Hea>ng	Degree	Days	changes.	

NightPurge			! 	
This	component	is	available	in	the	iSMA_control	paleXe.	It	uses	the	two	sets	of	temperature	and	
humidity	 inputs	 to	 find	 the	 air	 supply	with	 the	 least	 amount	 of	 heat	when	 the	 purgeEnabled	
input	 is	 true.	 The	 freeCooling	 output	will	 be	 set	 to	 false	 if	 outside	 >=	 inside	 or	 set	 to	 true	 if	
outside	=	nightSetpoint.		
For	inside	and	outside	comparisons,	you	can	select	either	temperature	or	enthalpy	comparisons.	
There	is	also	a	low	temperature	check	to	protect	against	freezing.		

The	NightPurge	component	includes	the	following	proper>es:		
	 Unit	Select	:	Specifies	the	units	of	Temperature	and	Humidity	proper>es.		
		 Purge	Enabled	:	Boolean,	must	be	true	to	enable	night	purge	opera>on.			
	 Whenever	false,	the	Free	Cooling	output	is	set	to	the	opposite	of	the	Free		
	 Cooling	Command	(or	null,	if	Use	Null	Output	is	set	to	true),	and	the	Current		
	 Mode	slot	value	is	"Disabled."		
		 Osen,	Purge	Enabled	is	linked	to	a	"Not"	object	sourced	from	a		 	 	
	 BooleanSchedule	output.		
		 Outside	Temperature	:	Input	for	the	current	outside	air	temperature.	This	input		
	 must	be	valid	for	this	object	to	func>on.		
		 Outside	Humidity	:	Input	for	the	current	outside	air	humidity.	This	input	must	be	
	 valid	for	this	object	to	func>on.		
		 Inside	Temperature	:	Input	for	the	current	inside	air	temperature.	This	input		
	 must	be	valid	for	this	object	to	func>on.		
		 Inside	Humidity	:	Input	for	the	current	inside	air	humidity.	This	input	must	be	valid	for		
	 this	object	to	func>on.		
		 Low	Temperature	Limit	:	This	property	is	used	to	provide	freeze	protec>on.		
		 Night	Setpoint	:	Inside	night	temperature	setpoint,	at	or	below	which	free		
	 cooling	is	not	applied.	Instead,	the	Current	Mode	is	set	to	"Sa>sfied."		
		 Outside	Enthalpy	:	This	is	the	calculated	outside	air	enthalpy.		
		 Inside	Enthalpy	:	This	is	the	calculated	inside	air	enthalpy.		
		 Free	Cooling	:	A	Boolean	output	set	to	value	of	the	Free	Cooling	Command		
	 when	it	is	determined	that	free	cooling	should	be	used.	Otherwise,	the	value	is		
	 set	to	the	opposite	state,	or	null	(if	Used	Null	Output	is	set	to	true).		
		 Current	Mode	:	This	enumera>on	indicates	which	of	the	following	modes	this	object	is		
	 currently	in:		
	 	 Disabled	(Purge	Enabled	is	false)		
	 	 Free	Cooling		
	 	 No	Free	Cooling	(free	cooling	not	available)		
	 	 Low	temperature	(Outside	Temp	below	Low	Temperature	Limit,	free	cooling		
	 	 disabled)		 	 	
	 	 Input	error	(A	temperature	or	humidity	is	invalid	(down,	fault,	etc.),	free	cooling		
	 	 disabled)	
	 	 Sa>sfied	(Inside	temperature	below	Night	Setpoint,	free	cooling	disabled)		
	 Setpoint	Deadband	:	Temperature	setpoint	deadband	applied	when	inside	temperature		
	 falls	below	Night	Setpoint,	before	free	cooling	can	be	enabled.	Default	value	is	1.0.		
	 Threshold	Span	:	The	difference	between	the	inside	enthalpy	and	the	outside	enthalpy		
	 must	be	greater	than	this	value	before	free	cooling	will	be	enabled.	Default	value	is	1.0.		
		 Use	Enthalpy	:	Semng	this	property	to	true	will	enable	the	use	of	enthalpy	for		
	 determining	if	free	cooling	is	available.	Otherwise,	it	will	just	use	outside	and		
	 inside	temperature	to	decide.	

OpMmizedStartStop			 ! 	
The	Op>mizedStartStop	 component	 allows	 you	 to	 use	 Start	 Time	Op>miza>on	 and	 Stop	 Time	
Op>miza>on	 to	 save	 energy.	 This	 component	 uses	 a	 space	 temperature	 input	 and	 area	
characteris>cs	 to	 calculate	 an	 op>mal	 amount	 of	 lead->me	 before	 a	 scheduled	 event.	 It	 can	
analyze	area	temperature	changes	and	adjust	the	op>miza>on	parameters	based	on	the	actual	
temperature	change	rates	aser	an	op>mized	start	or	stop.	
The	two	basic	op>miza>on	types	are	described,	as	follows:		
	 Start	Mme	opMmizaMon	:	This	type	of	op>miza>on	reduces	energy	consump>on	by		
	 turning	on	equipment	at	the	latest	possible	>me	that	s>ll	allows	for	providing	a		 	
	 comfortable	temperature	by	occupancy	>me.		
	 Stop	Mme	opMmizaMon	:	This	type	of	op>miza>on	turns	equipment	off	at	the	earliest		
	 possible	>me	that	allows	the	building	to	"dris"	and	stay	within	a	temperature	comfort		
	 range	un>l	the	end	of	occupancy	>me.	

The	 Op>mizedStartStop	 calcula>on	 is	 performed	 at	 15	 seconds	 aser	 the	 beginning	 of	 every	
minute,	when	 the	 appropriate	 Start	 Enable	 or	 Stop	 Enable	 proper>es	 are	 set	 to	 true,	 a	 valid	
schedule	event	 is	 linked	to	 the	component,	and	the	next	scheduled	event	value	 is	not	already	
set.		
For	example,	if	a	value	is	scheduled	to	be	set	to	"true"	in	1	hour	but	is	already	set	to	"true",	no	
calcula>on	is	performed,	even	if	the	Start	Enable	or	Stop	Enable	proper>es	are	set	to	true.	The	
product	of	 this	calcula>on	 is	 the	"Calculated	Command	Time".	The	Calculated	Command	Time	
applies	to	both	the	Start	Time	and	the	Stop	Time,	as	appropriate.	Therefore,	it	defines	an	early	
start	 command	 to	 achieve	 a	 specified	 temperature	 range	 by	 occupancy	 >me	or	 an	 early	 stop	
command	 without	 sacrificing	 the	 temperature	 range	 by	 unoccupancy	 >me.	 Aser	 a	
CalculatedCommand	 Time	 is	 invoked,	 the	 actual	 area	 response	 (temperature	 change	 rate)	 is	
analyzed	 and	 weighted	 adjustments	 are	 made	 to	 the	 calcula>on	 parameters	 based	 on	 the	
detected	values	so	that	subsequent	calcula>ons	might	be	more	accurate.		

Start	>me	and	stop	>me	opera>ons	are	described	below:		
Calculated	 Start	 Time	 :	Only	 one	 op>mized	 start	 sequence	 is	 performed	per	 day.	 The	
following	factors	affect	the	Calculated	Start	Time	calcula>on.		
Temperature	differenMal	:	If	the	space	temperature	is	outside	the	range	defined	by	the	
lower	and	upper	comfort	limits,	the	difference	between	the	space	temperature	and	the	
closer	limit	represents	the	number	of	degrees	the	mechanical	equipment	must	make	up	
during	the	prestart	("op>mized")	period.		
Run-Mme	minutes	:	The	run->me	hea>ng	or	cooling	factors	(depending	on	the	direc>on	
the	 space	 temperature	 must	 move)	 are	 mul>plied	 by	 the	 temperature	 differen>al	 to	
determine	 the	 number	 of	 run->me	 minutes	 required	 to	 achieve	 the	 comfort	 limit	 at	
occupancy	>me,	as	defined	by	the	schedule's	start	>me.		
OpMmum	start	Mme	:	When	the	system's	>me	is	later	than	the	schedule's	>me	offset	by	
the	calculated	lead>me,	the	op>mum	start	outputs	are	enabled.		
**If	the	calculated	lead>me	is	so	large	that	an	op>mum	start	>me	prior	to	midnight	 is	
the	result,	the	op>mum	start	occurs	at	midnight.	An	op>mum	start	is	performed	only	for	
the	first	scheduled	start	for	the	day.		
Calculated	Stop	Time	:	You	can	perform	mul>ple	stop	opera>ons	but	no	op>mized	stop	
can	occur	before	the	>me	specified	by	the	Earliest	Stop	Time	property.		

		 Temperature	differenMal	:	If	the	space	temperature	is	inside	the	range	defined	by	the		
	 lower	and	upper	comfort	limits	and	the	schedule's	status	is	ac>ve,	the	difference		
	 between	the	space	temperature	and	one	of	the	limits	(depending	on	the	mode)			
	 represents	the	number	of	degrees	the	temperature	can	dris	between	the	>me	the		
	 mechanical	equipment	is	stopped	and	the	schedule's	inac>ve	event	>me.		
	 DriQ	Mme	:	The	dris	(lead->me)	calcula>on	is	similar	to	the	one	for	Start	Time	but	using		
	 the	dris->me	hea>ng	and	cooling	factors.		
	 OpMmum	stop	Mme	:	Op>mum	stop	>me	is	invoked	for	each	of	the	schedule's	inac>ve		
	 events	and	is	based	on	the	dris	>me	and	Next	Event	Time	value.		

	The	Op>mizedStartStop	component	includes	the	following	proper>es:		
		 Heat	Cool	Mode	:	This	boolean	property	allows	you	to	enable	either	the	heatMode	or		
	 the	coolMode.	The	selected	op>on	applies	only	to	op>mized	stop	calcula>ons	which		
	 means	that	op>mized	stop	calcula>ons	are	performed	only	for	the	selected	mode.		
	 Op>mized	start	calcula>ons	are	performed	for	both	heat	and	cool	modes,	regardless	of		
	 this	property	value.		
	 Parameter	Reset	Time	:	This	property	displays	the	>me	when	any	of	the	four	run>me	or		
	 drisime	proper>es	change	to	the	User	Defined	values.	The	OSS	component	copies	the		
	 user	defined	dris>me	and	run>me	property	values	to	the	corresponding	actual	dris>me	
	 and	run>me	property	values.		
	 Start	Enable	:	This	property	allows	you	to	manually	or	automa>cally	enable	or	disable		
	 the	op>mized	start	func>on.		
	 Stop	Enable	:	This	property	allows	you	to	manually	or	automa>cally	enable	or	disable		
	 the	op>mized	stop	func>on.		
	 Schedule	Status	:	This	boolean	property	monitors	and	displays	the	status	of	the	schedule	
	 that	is	linked	to	it.		
	 Next	Event	Time	:	This	property	is	linked	to	a	schedule	for	the	>me	of	the	next		 	
	 scheduled	event.		
	 Next	Event	Value	:	This	property	is	linked	to	a	schedule	and	reflects	the	value	of	the		
	 ac>on	for	next	scheduled	event.		
	 Outside	Temp	:	This	property	is	linked	to	outside	temperature	and	displays	the	value	for		
	 informa>on	only.		
	 Space	Temp	:	This	property	is	linked	to	a	space	temperature	output	and	displays	the		
	 temperature	of	the	area	affected	by	equipment	associated	with	the	OSS	component.		
	 Start	Time	Command	:	This	boolean	property	is	an	output	that	you	link	to	a	control	for		
	 invoking	an	equipment	start	command.	For	example,	it	can	be	linked	to	a	priori>zed		
	 input	of	a	boolean	writable	-	or	directly	to	the	equipment	Start	control.		
	 Stop	Time	Command	:	This	boolean	property	is	an	output	that	you	link	to	a	control	for		
	 invoking	an	equipment	stop	command.	For	example,	it	can	be	linked	to	a	priori>zed		
	 input	of	a	boolean	writable	-	or	directly	to	the	equipment	Stop	control.		
	 Upper	Comfort	Limit	:	This	property	value	is	the	Cooling	mode	target	temperature.		
	 Lower	Comfort	Limit	:	This	property	value	is	the	Hea>ng	mode	target	temperature.		
	 Dynamic	Parameter	Adjust	:	This	controls	whether	or	not	calcula>on	parameters	are		
	 programma>cally	adjusted	aser	an	execu>on.	Aser	the	OSS	component	completes	a		
	 start	or	stop	control,	if	this	property	value	is	set	to	true,	the	component	evaluates	the		
	 actual	recovery	rate	(degrees/hour)	and	automa>cally	adjusts	the	Run>me	and	Dris>me	
	 proper>es	values	so	that	they	are	influenced	by	actual	dris	>me	and	run	>me.		
	 Old	Parameter	MulMplier	:	This	property	is	used	to	weight	the	dynamic	parameter		
	 adjustment	calcula>on.	The	value	that	you	specify	in	this	field	affects	how	much			
	 weigh>ng	you	assign	to	the	previous	run>me	property	value	when	it	is	used	in	the		
	 dynamic	parameter	adjustment	calcula>on.	A	larger	value	increases	the	amount	of		
	 weigh>ng	given	to	the	previous	run>me	and	a	smaller	value	decreases	the	weigh>ng.		
	 Earliest	Start	Time	:	This	property	allows	you	to	specify	a	>me,	before	which,	no			
	 op>mized	start	command	may	be	issued.	If	this	value	is	set	earlier	than	the	Calculated		
	 Command	Time,	the	Calculated	Command	Time	is	adjusted	to	equal	this	>me.	
	 Earliest	Stop	Time	:	This	property	allows	you	to	specify	a	>me,	before	which,	no	stop		
	 command	may	be	issued.	If	this	value	is	set	earlier	than	the	Calculated	Command	Time,		
	 the	Calculated	Command	Time	is	adjusted	to	equal	this	>me.		
	 DriQMme	Per	Degree	Cooling	User	Defined	:	This	property	allows	you	to	set	a	default		
	 value	for	calcula>ng	the	rate	of	dris	in	cooling	mode.	When	you	save	a	value	to	this		
	 field,	the	value	is	copied	to	the	Dris>me	Per	Degree	Cooling	field.		
	 DriQMme	Per	Degree	HeaMng	User	Defined	:	This	property	allows	you	to	set	a	default		
	 value	for	calcula>ng	the	rate	of	dris	in	hea>ng	mode.	When	you	save	a	value	to	this		
	 field,	the	value	is	copied	to	the	Dris>me	Per	Degree	Hea>ng	field.		

	 RunMme	Per	Degree	Cooling	User	Defined	:	This	property	allows	you	to	set	a	default		
	 value	for	calcula>ng	the	run>me	value	in	cooling	mode.	When	you	save	a	value	to	this		
	 field,	the	value	is	copied	to	the	Run>me	Per	Degree	Cooling	field.		
	 RunMme	Per	Degree	HeaMng	User	Defined	:	This	property	allows	you	to	set	a	default		
	 value	for	calcula>ng	the	run>me	value	in	hea>ng	mode.	When	you	save	a	value	to	this		
	 field,	the	value	is	copied	to	the	Run>me	Per	Degree	Hea>ng	field.		
	 DriQMme	Per	Degree	Cooling	:	This	property	displays	the	actual	value	that	is	used	for	
	 calcula>ng	an	op>mized	stop	>me	when	the	equipment	is	in	cooling	mode.	This	value	is		
	 adjusted	automa>cally	if	the	Dynamic	Parameter	Adjust	value	is	set	to	true.		
	 DriQMme	Per	Degree	HeaMng	:	This	property	displays	the	actual	value	that	is	used	for		
	 calcula>ng	an	op>mized	stop	>me	when	the	equipment	is	in	hea>ng	mode.	This	value	is		
	 adjusted	automa>cally	if	the	Dynamic	Parameter	Adjust	value	is	set	to	true.		
	 RunMme	Per	Degree	Cooling	:	This	property	displays	the	actual	value	that	is	used	for		
	 calcula>ng	an	op>mized	start	>me	when	the	equipment	is	in	cooling	mode.	This	value	is		
	 adjusted	automa>cally	if	the	Dynamic	Parameter	Adjust	value	is	set	to	true.		
	 RunMme	Per	Degree	HeaMng	:	This	property	displays	the	actual	value	that	is	used	for		
	 calcula>ng	an	op>mized	start	>me	when	the	equipment	is	in	hea>ng	mode.	This	value	is		
	 adjusted	automa>cally	if	the	Dynamic	Parameter	Adjust	value	is	set	to	true.		
	 Last	Start	Time	:	This	is	a	record	of	the	last	Start	Time	that	was	used	for	calcula>ng	an		
	 op>mized	start	>me.	Since	only	one	op>mized	start	per	day	is	allowed,	this	value	does		
	 not	display	Start	Times	(restarts)	that	are	subsequent	to	the	ini>al	Start	Time	for	a	day.		
	 Last	Stop	Time	:	This	is	a	record	of	the	last	Stop	Time	that	was	used	for	calcula>ng	an		
	 op>mized	stop	>me.	Since	mul>ple	Op>mized	Stops	are	allowed	in	a	day,	this	value		
	 changes	to	reflect	the	latest	Op>mized	Stop	>me.		
	 Outside	Temp	At	Beginning	:	This	is	a	record	of	what	the	outside	air	temperature	was	at		
	 the	>me	of	the	last	start	or	stop	command.	This	is	the	temperature	that	was	used	in		
	 calcula>ons	for	dynamic	parameter	adjustment.		
	 Space	Temp	At	Beginning	:	This	is	a	record	of	what	the	space	temperature	was	at	the		
	 >me	of	the	last	start	or	stop	command.	This	is	the	temperature	that	was	used	in			
	 calcula>ons	for	dynamic	parameter	adjustment.		
	 Calculated	Command	Time	:	This	field	shows	the	calculated	>me	for	the	next	command.		
	 This	could	be	a	start	or	a	stop	command.		
	 Program	 Mode	 :	 As	 part	 of	 the	 logic	 that	 the	 OSS	 component	 uses,	 there	 are	 five	
	 "program	mode"	states.	These	states	serve	primarily	in	logic	control,	however,	they	may		
	 be	informa>ve	to	the	system	engineer,	as	well.	The	Program	Mode	value	displays	the		
	 current	hea>ng	or	cooling	state	for	op>mized	start	or	stop.	The	following	list	describes		
	 the	possible	display	values	and	meanings.		
		 	 0	("No"	Calcula>on)		
	 	 This	value	indicates	that	no	calcula>on	is	being	made		
	 	 	
	 	 1	("Start"	Calcula>on)		
	 	 This	valued	indicates	that	the	op>mized	start	calcula>on	process	is	ongoing	but		
	 	 that	an	op>mized	start	or	stop	is	not	yet	in	progress.		

	 	 2	("Start"	in	Process)		
	 	 This	value	indicates	that	an	op>mized	start	has	been	ini>ated.		

	 	 3	("Stop"	Calcula>on)		
	 	 This	value	indicates	that	an	op>mized	stop	calcula>on	process	is	ongoing	but		
	 	 that	an	op>mized	start	or	stop	is	not	yet	in	progress.		
	 	 	
	 	 4	("Stop"	in	Process)		
	 	 This	value	indicates	that	an	op>mized	stop	has	been	ini>ated.	

OutsideAirOpMmizaMon			 ! 	
OutsideAirOp>miza>on	 is	 available	 in	 the	 iSMA_control	 paleXe.	 The	 OutsideAirOp>miza>on	
component	 is	used	to	support	applica>ons	that	need	to	allow	for	enthalpy	based	free	cooling.	
This	object	is	typically	used	during	occupancy	periods.		
The	 freeCooling	output	 is	set	 to	 false	 if	outside	>=	 inside	and	set	 to	 true	 if	outside	<=	 inside	 -	
(abs)	 thresholdSpan.	You	can	select	 temperature	or	enthalpy	comparisons.	There	 is	also	a	 low	
temperature	check	to	protect	against	freezing.		
Setup	of	the	object	involves	the	following	proper>es,	as	follows:		
	 Unit	Select	:	This	is	used	to	set	the	units	of	the	Temperature	and	Humidity	proper>es.		
	 Outside	Temperature	:	Input	for	the	current	outside	air	temperature.	This	input	must	be		
	 valid	for	this	object	to	func>on.		
	 Outside	Humidity	:	Input	for	the	current	outside	air	humidity.	This	input	must	be	valid		
	 for	this	object	to	func>on.		
	 Inside	Temperature	:	Input	for	the	current	inside	air	temperature.	This	input	must	be		
	 valid	for	this	object	to	func>on.		
	 Inside	Humidity	:	Input	for	the	current	inside	air	humidity.	This	input	must	be	valid	for		
	 this	object	to	func>on.		
	 Low	Temperature	Limit	:	This	property	is	used	to	provide	freeze	protec>on.		
	 Outside	Enthalpy	:	This	is	the	calculated	outside	air	enthalpy.		
	 Inside	Enthalpy	:	This	is	the	calculated	inside	air	enthalpy.		
	 Free	Cooling	:	This	boolean	output	value	is	set	to	the	value	of	the	Free	Cooling		 	
	 Command	when	it	is	determined	that	free	cooling	should	be	used.	Otherwise,	the	value		
	 is	set	to	null.		
	 Current	Mode	:	This	indicates	what	mode	this	object	is	currently	in.		
	 	 Input	out	of	range		
	 	 Free	Cooling		
	 	 No	Free	Cooling		
	 	 Low	temperature		
	 	 Input	error		
	 Threshold	Span	:	The	difference	between	the	inside	enthalpy	and	the	outside	enthalpy		
	 must	be	greater	than	this	value	before	free	cooling	will	be	enabled.		
	 Use	Enthalpy	:	Semng	this	property	to	true	will	enable	the	use	of	enthalpy	for		 	
	 determining	if	free	cooling	is	available.	Otherwise,	it	will	just	use	outside	and	inside		
	 temperature	to	decide.	

Psychrometric			 ! 	
The	Psychometric	component	is	available	in	the	iSMA_control	paleXe.	You	can	use	it	to	support	
applica>ons	 that	 need	 to	 calculate	 the	 proper>es	 of	 moist	 air	 using	 given	 temperature	 and	
humidity	inputs.		
Setup	of	the	component	involves	semng	the	following	proper>es:		
	 Unit	Select	:	Used	to	set	the	units	of	the	Temperature	and	Humidity	proper>es.		
	 Input	Temperature	:	Input	temperature		
	 Input	humidity	:	Input	humidity		
	 Dew	Point	Temperature	:	Calculated	dew	point	temperature.	Requires	valid	Input		
	 Temperature	and	Input	Humidity	to	calculate.		
	 Enthalpy	:	Calculated	enthalpy.	Requires	valid	Input	Temperature	and	Input	Humidity	to		
	 calculate.		
	 Saturated	Pressure	:	Calculated	saturated	pressure.	Requires	valid	Input	Temp	to		
	 calculate.		
	 Vapor	Pressure	:	Calculated	vapor	pressure.	Requires	valid	Input	Temperature	and	Input		
	 Humidity	to	calculate.		
	 Wet	Bulb	Temperature	:	Calculated	wet	bulb	temperature.	Requires	valid	Input		 	
	 Temperature	and	Input	Humidity	to	calculate.	

HVAC	components	
HVAC	 components	 provide	 various	 control	 func>ons	 used	 in	 commercial	 HVAC	 applica>ons.	
Included	are	the	following	components:		

LeadLagCycles			! 		
LeadLagCycles	 provides	 lead-lag	 control	 of	 2	 to	 16	 loads	 based	 upon	 their	 accumulated	 COS	
(change	of	state)	counts.	This	object	balances	the	number	of	change	of	states	cycles	of	each	of	
the	devices.	Only	one	of	the	controlled	devices	will	be	ac>ve	at	a	>me	based	on	cycle	count.	
LeadLagCycles	 is	 available	 in	 the	 iSMA_control	 paleXe,	 along	 with	 a	 similar	 LeadLagRun>me	
object.	
Setup	of	the	object	involves	the	following	proper>es:	
	 In	:	A	Boolean	input	that	controls	whether	any	control	device	should	be	on.	If	this	input		
	 is	true,	one	of	the	outputs	will	be	ac>ve	based	on	the	cycle	count	of	each	controlled		
	 device.		
		 Number	Outputs	:	Specifies	the	number	of	devices	(outputs)	that	are	controlled.		
		 Max	RunMme	:	Specifies	the	maximum	amount	a	given	output	will	be	true	before		
	 switching	to	another	output.		
	 Feedback	:	A	Boolean	input,	to	provide	posi>ve	feedback	that	a	controlled	device		
	 actually	started.	If	the	feedback	value	does	not	show	true	within	the	Feedback	Delay		
	 >me,	the	current	controlled	output	will	show	alarm,	and	the	LeadLagCycles	switches	to		
	 the	next	controlled	output.	Semng	this	value	to	true	(and	not	linking)	disables	this	alarm		
	 feature.		
		 Out	A	-	P	:	Boolean	outputs,	each	typically	linked	to	a	BooleanWritable	control		
	 point	with	a	DiscreteTotalizerExt.	Outputs	are	typically	used	to	control	loads	of		
	 some	type,	such	as	2	or	more	pumps.		
		 Cycle	Count	A	-	P	:	These	are	Integer	inputs	that	are	used	for	cycle	count	feedback	for		
	 the	corresponding	Out	A	-	P.	These	inputs	will	typically	be	linked	to	the		 	 	
	 ChangeOfStateCount	property	of	the	DiscreteTotalizerExt	that	is	measuring	the	cycles	of		
	 the	corresponding	Out	A	-	P.		

LeadLagRunMme			! 	
LeadLagRun>me	provides	lead-lag	control	of	from	2	to	16	loads	based	upon	their	accumulated	
run>mes	(elapsed	ac>ve	>me).	This	object	balances	the	ac>ve	run>me	of	each	of	the	devices.	
Only	one	of	the	controlled	devices	will	be	ac>ve	at	a	>me	based	on	run>me.	
Setup	of	the	object	involves	the	following	as	follows:		
		 In	:	A	Boolean	input	that	controls	whether	any	control	device	should	be	on.	If	this	input		
	 is	true,	one	of	the	outputs	will	be	ac>ve	based	on	run>me.		
		 Number	Outputs	:	Specifies	the	number	of	devices	(outputs)	that	are	controlled.		
		 Max	RunMme	:	Specifies	the	maximum	amount	a	given	output	will	be	true		
	 before	switching	to	another	output.		
		 Feedback	:	A	Boolean	input,	to	provide	posi>ve	feedback	that	a	controlled		
	 device	actually	started.	If	the	feedback	value	does	not	show	true	within	the		
	 Feedback	Delay	>me,	the	current	controlled	output	will	show	alarm,	and	the		
	 LeadLagRun>me	switches	to	the	next	controlled	output.	Semng	this	value	to		
	 true	(and	not	linking)	disables	this	alarm	feature.		
		 Out	A	-	P	:	Boolean	outputs,	each	typically	linked	to	a	BooleanWritable	control		
	 point	with	a	DiscreteTotalizerExt.	Outputs	are	typically	used	to	control	loads	of		
	 some	type,	such	as	2	or	more	pumps.		
		 RunMme	A	-	P	:	These	are	inputs	that	are	used	for	run>me	feedback	for	the		
	 corresponding	Out	A	-	P.	These	inputs	will	typically	be	linked	to	the		 	
	 ElapsedAc>veTime	property	of	the	DiscreteTotalizerExt	that	is	measuring	the		
	 run>me	of	the	corresponding	Out	A	-	P.	

LoopPoint			! 	
The	 LoopPoint	 implements	 a	 simple	 PID	 control	 loop,	 and	 is	 available	 in	 the	 iSMA_control	
paleXe.	 Loop	objects	provide	closed-loop	PID	control	 (propor>onal,	 integral,	deriva>ve)	at	 the	
controller	level.	Independent	gain	constants	allow	the	loop	to	be	configured	as	P-only,	PI,	or	PID.		
Setup	of	the	LoopPoint	component	involves	semng	the	following	proper>es:		
		 Loop	Enable	:	Semng	this	input	to	true	will	enable	the	PID	loop	algorithm	to	execute	at		
	 the	rate	selected	by	the	Execute	Time	property.	Semng	this	input	to	false	will	force	the		
	 PID	loop	output	to	a	value	dependent	on	the	selec>on	in	the	Preset	property.		
		 Controlled	Variable	:	Input	for	the	controlled	parameter	(for	example,	space		
	 temperature).	This	input	must	be	valid	for	this	object	to	func>on.		
		 Setpoint	:	Input	for	the	setpoint	value	(for	example,	space	temperature	setpoint).	This		
	 input	must	be	valid	for	this	object	to	func>on.	
	 Execute	Time	:	Controls	the	execu>on	frequency	for	the	PID	algorithm,	where		
	 the	default	value	is	1	second.		
		 Loop	AcMon	:	Determines	whether	the	control	algorithm	is	direct	or	reverse		
	 ac>ng.		
		 	 Loops	setup	for	direct	ac>ng	mode	increase	the	loop	output	as	the	value	
	 	 of	the	controlled	variable	becomes	greater	than	the	setpoint	value.	In	a		
	 	 temperature	loop,	this	is	typically	considered	to	be	a	cooling	applica>on.		
		 	 Loops	setup	for	reverse	ac>ng	mode	increase	the	loop	output	as	the		
	 	 value	of	the	controlled	variable	becomes	less	than	the	setpoint	value.	In		
	 	 a	temperature	loop,	this	is	typically	considered	to	be	a	hea>ng		 	
	 	 applica>on.		
		 Preset	:		

Max	Value	sets	the	loop	output	value	to	the	Maximum	Output	property	
value.		
Min	Value	sets	the	loop	output	value	to	the	Minimum	Output	property					

	 value.		
Zero	sets	the	loop	output	value	to	a	zero	(0.0)	value.		

		 ProporMonal	Constant	:	Defines	the	value	of	the	propor>onal	gain	parameter		
	 used	by	the	loop	algorithm.	Used	to	set	the	overall	gain	for	the	loop.	A	star>ng		
	 point	for	this	value	is	found	by	output	range/throXling	range.		
		 Integral	Constant	:	Defines	the	integral	gain	parameter,	in	repeats	per	minute,		
	 used	by	the	loop	algorithm.	Also	called	reset	rate.	Acts	on	magnitude	of	the		
	 setpoint	error.	A	typical	star>ng	point	is	0.5.		
		 DerivaMve	Constant	:	Defines	the	deriva>ve	gain	parameter,	in	seconds,	used	by		
	 the	loop	algorithm.	Acts	on	the	rate	of	change	of	the	setpoint	error.		
		 Bias	:	Defines	the	amount	of	output	bias	added	to	the	output	to	correct	offset		
	 error,	normally	used	only	used	with	propor>onal	control.		
		 Maximum	Output	:	Defines	the	maximum	output	value	that	the	loop	algorithm		
	 can	produce.		
		 Minimum	Output	:	Defines	the	minimum	output	value	that	the	loop	algorithm	can		
	 produce.	

RateOfChange			! 	
RateOfChange	Component	provides	the	Rate	of	Change	of	Input	based	on	the	devia>on		 														
&	Offnormal	High	&	Low	values.	

ReheatSequence			 ! 	
ReheatSequence	will	provide	a	Linear	Sequence	of	up	to	4	loads	based	on	configurable		 				
thresholds.	 Sets	 an	 output	 true	 if	 the	 "in"	 value	 is	 greater	 than	 corresponding	 threshold,	 and	
returns		the	ouput	to	false	if	the	"in"	value	is	less	than	threshold	minus	the	hysteresis	value.	
					

	 outA	:=	true	when	in	>=	thresholdA	
					 outB	:=	true	when	in	>=	thresholdB	

					 outC	:=	true	when	in	>=	thresholdC	
				 outD	:=	true	when	in	>=	thresholdD		

SequenceBinary			! 	
The	SequenceBinary	component	provides	sequenced	weighted	"staging"	control	of	2	to	10	loads	
based	upon	the	numeric	Input	value	(0--100).	It	can	be	used	to	support	applica>ons	that	need	to	
sequence	2	to	10	loads	or	stages	in	a	binary	sequence.	Binary	sequencing	provides	an	analog	to	
binary	converter	func>on	that	selects	the	outputs	whose	total	load	ra>ng	relates	directly	to	the	
control	need.	For	each	successive	output,	the	output	ra>ng	is	twice	the	previous	output.		
A	 similar	 object	 is	 the	 SequenceLinear,	 which	 uses	 a	 rota>ng	 method	 (vs.	 weighted)	 for	
sequencing.	SequenceBinary	is	available	in	the	HVAC	folder	of	the	iSMA_control	paleXe.	

Table	5	illustrates	how,	by	controlling	3	loads,	eight	unique	levels	of	control	can	be	achieved:	

� 	

Setup	of	the	SequenceBinary	object	involves	the	following	proper>es:		
		
In	:	Input	property	that	is	used	to	determine	the	number	of	stages	that	should	currently	
be	On.		
In	Minimum	:	Value	of	the	input	that	produces	all	outputs	off.		
In	Maximum	:	Value	of	the	input	that	produces	all	outputs	on.		
Number	Outputs	:	This	object	can	be	configured	to	support	2	to	10	outputs	or	stages.		
OutA	-	OutJ	 :	These	are	boolean	values	that	can	be	used	to	control	2	to	10	 loads.	The	
number	of	outputs	used	is	defined	by	the	Number	Outputs	property.		
Desired	Stages	On	 :	Read-only	property	that	 indicates	the	calculated	number	of	stages	
that	should	be	on	based	on	the	In	property.		
Current	Stages	On	:	Read-only	property	that	indicates	the	current	number	of	stages	that	
are	currently	on.	Normally	the	Current	Stages	On	and	the	Desired	Stages	On	will	be	the	
same.	They	will	be	different	when	going	through	a	transi>on.		

SequenceFailover			! 		
SequenceFailover	component	is	used	to	cascade	and	sequence/stage	loads	based	on	the		
stageStatus,	cascadeMsgIn	and	failStatus	inputs.	

SequenceLinear			! 	
SequenceLinear	provides	sequenced	rota>ng	"staging"	control	of	2	to	10	loads	based	upon	the	
numeric	 Input	 value	 (0--100).	 A	 similar	 object	 is	 the	 SequenceBinary,	 which	 uses	 a	 weighted	
method	(vs.	rota>ng)	for	sequencing.		
The	SequenceLinear	component	can	be	used	to	support	applica>ons	that	need	to	sequence	2	to	
10	loads	or	stages	in	a	linear	or	rota>ng	sequence.	With	linear	sequencing	the	first	stage	on	will	
be	the	last	stage	off.	With	rota>ng	sequencing	the	first	stage	on	will	be	the	first	stage	off.	The	In	
property,	which	 is	 a	Numeric,	 is	used	 to	 control	 the	number	of	 stages	 that	 should	be	on.	 The	
input	 range	 is	 defined	 by	 the	 InMinimum	 and	 InMaximum	 proper>es.	 SequenceLinear	 is	
available	in	the	iSMA_control	paleXe.	
On	 and	 Off	 setpoints	 are	 calculated	 for	 each	 stage	 by	 the	 following	 Table	 5	 formulas	 (this	
assumes	there	are	5	outputs	defined):	

Table	5.	SequenceLinear	On	/	Off	calcula>on	formulas	

						� 	
Setup	of	the	SequenceLinear	object	involves	configuring	the	following	proper>es:		

		 In	:	Input	property	that	is	used	to	determine	the	number	of	stages	that	should	currently		
	 be	On.		
	 In	Maximum	:	Value	of	the	input	that	produces	all	outputs	on.	
	 In	Minimum	:	Value	of	the	input	that	produces	all	outputs	off.		 	
	 Number	Outputs	:	This	object	can	be	configured	to	support	2	to	16	outputs	or	stages.		
	 OutA	-	OutP	:	These	are	boolean	values	that	can	be	used	to	control	2	to	16	loads.	The		
	 number	of	outputs	used	is	defined	by	the	Number	Outputs	property.		
	 Desired	Stages	On	:	Read-only	property	that	indicates	the	calculated	number	of	stages		
	 that	should	be	on	based	on	the	In	property.		
	 Current	Stages	On	:	Read-only	property	that	indicates	the	current	number	of	stages	that		
	 are	currently	on.	Normally	the	Current	Stages	On	and	the	Desired	Stages	On	will	be	the		
	 same.	They	will	be	different	when	going	through	a	transi>on.		
	 Next	Stage	On	:	Read-only	property	that	indicates	the	next	stage	that	will	be	turned	on	if	
	 needed.	This	is	primarily	used	when	the	Mode	is	selected	to	be	Rota>ng.		
	 Next	Stage	Off	:	Read-only	property	that	indicates	the	next	stage	that	will	be	turned	off		
	 if	needed.	This	is	primarily	used	when	the	Mode	is	selected	to	be	Rota>ng.		
	 Rotate	Time	:	This	configura>on	property	specifies	the	amount	of	>me	that	the	outputs		
	 will	remain	in	a	fixed	configura>on	before	the	outputs	are	shised	to	the	next		 	
	 configura>on.		
	 Rotate	Timer	AcMve	:	Read-only	property	that	indicates	that	the	rotate	>mer	is	ac>ve.	

Thermostat			 ! 	
Thermostat	 component	 provides	 the	 output	 control	 based	on	 the	 input	 (process)	 and	 the	 set	
point	value.	
	 Set	Point	:	Desired/target	value.	
	 Cut	In	Offset	:	Defines	the	differen>al	value	between	Controlled	Variable	and	SetPoint	to	
	 determine	the	Thermostat	output	on	state.	A	posi>ve	CutInOffset	value	means	greater		
	 than	SetPoint,	and	a	nega>ve	CutInOffset	value	means	lower	than	SetPoint	during		
	 comparison.	For	cooling	control,	use	posi>ve	value	and	nega>ve	value	for	hea>ng		
	 control.			
	 Cut	Out	Offset	:	Defines	the	differen>al	value	between	Controlled	Variable	and	SetPoint		
	 to	determine	the	Thermostat	output	off	state.	A	posi>ve	CutOutOffset	value	means		
	 greater	than	SetPoint,	and	a	nega>ve	CutOutOffset	value	means	lower	than	SetPoint		
	 during	comparison.	For	cooling	control,	use	nega>ve	value	and	posi>ve	value	for	hea>ng	
	 control.				

Tstat			 ! 	
Tstat	 provides	 basic	 thermosta>c	 (On/Off)	 control	 with	 a	 Boolean	 Out	 property	 and	 Numeric	
inputs	for	controlled	variable	(Cv),	setpoint	(Sp),	and	differen>al	(Diff).	

Latch	components	
Latch	components	allow	you	 to	 capture	an	 input	value	by	using	either	 the	component's	Clock	
property.	"Latching"	means	semng	the	value	of	the	latch	component	"Out"	property	to	whatever	
the	value	of	the	latch	component	"In"	property	is	at	the	>me	that	the	"latch"	occurs.	The	value	
of	the	latch	component	"In"	property	is	ignored	at	all	>mes	other	than	the	when	a	latch	occurs.		

BooleanLatch			 ! 	

BooleanLatch	provides	a	latch	for	a	boolean	input,	and	is	found	in	the	iSMA_control	paleXe.	Any	
latch	 that	 is	 invoked	 using	 the	 Clock	 property	 must	 include	 a	 method	 for	 semng	 the	 Clock	
property	status	back	to	False	before	the	Clock	is	available	for	latching	again.	

Latch	components	have	the	following	proper>es	that	are	common	to	all	 latch	component	data	
types:		

	 Clock	:	This	is	a	boolean	property	that	has	either	a	True	or	False	state	for	all	latch		
	 components.	This	property	"latches"	the	input	property	to	the	output	property	on	the		
	 "rising	edge".	This	means	that	a	single	input	property	is	captured	and	sent	to	the	output		
	 property	at	the	instant	that	the	Clock	status	changes	from	a	False	to	a	True	state	and		
	 NOT	when	the	property	changes	from	a	True	to	a	False	state.		

	 Out	:	This	standard	component	property	provides	the	actual	latched	value	that	is		
	 captured	from	the	input	property	at	"latch"	>me.	Link	to	this	property	to	display	the		
	 value	on	a	graphic	or	to	process	the	value	with	another	component.		

	 In	:	This	is	the	standard	component	input	property	that	you	link	into	from	a	data	source.		
	 For	example,	you	can	link	into	this	property	from	a	control	point	or	a	Schedule	output.	

IntegerLatch			 ! 	

IntegerLatch	provides	a	latch	for	a	integer	input,	and	is	found	in	the	iSMA_control	paleXe.	Any	
latch	 that	 is	 invoked	 using	 the	 Clock	 property	 must	 include	 a	 method	 for	 semng	 the	 Clock	
property	status	back	to	False	before	the	Clock	is	available	for	latching	again.	

Latch	components	have	the	following	proper>es	that	are	common	to	all	 latch	component	data	
types:		

		 Clock	:	This	is	a	boolean	property	that	has	either	a	True	or	False	state	for	all	latch		
	 components.	This	property	"latches"	the	input	property	to	the	output	property	on	the		
	 "rising	edge".	This	means	that	a	single	input	property	is	captured	and	sent	to	the	output		
	 property	at	the	instant	that	the	Clock	status	changes	from	a	False	to	a	True	state	and		
	 NOT	when	the	property	changes	from	a	True	to	a	False	state.		
	 Out	:	This	standard	component	property	provides	the	actual	latched	value	that	is		
	 captured	from	the	input	property	at	"latch"	>me.	Link	to	this	property	to	display	the		
	 value	on	a	graphic	or	to	process	the	value	with	another	component.		

	 In	:	This	is	the	standard	component	input	property	that	you	link	into	from	a	data	source.		
	 For	example,	you	can	link	into	this	property	from	a	control	point	or	a	Schedule	output.	

NumericLatch			! 	

NumericLatch	provides	a	latch	for	a	boolean	input,	and	is	found	in	the	iSMA_control	paleXe.	Any	
latch	 that	 is	 invoked	 using	 the	 Clock	 property	 must	 include	 a	 method	 for	 semng	 the	 Clock	
property	status	back	to	False	before	the	Clock	is	available	for	latching	again.	
Latch	components	have	the	following	proper>es	that	are	common	to	all	 latch	component	data	
types:		
		 Clock	:	This	is	a	boolean	property	that	has	either	a	True	or	False	state	for	all	latch		
	 components.	This	property	"latches"	the	input	property	to	the	output	property	on	the		
	 "rising	edge".	This	means	that	a	single	input	property	is	captured	and	sent	to	the	output		
	 property	at	the	instant	that	the	Clock	status	changes	from	a	False	to	a	True	state	and		
	 NOT	when	the	property	changes	from	a	True	to	a	False	state.		
	 Out	:	This	standard	component	property	provides	the	actual	latched	value	that	is		
	 captured	from	the	input	property	at	"latch"	>me.	Link	to	this	property	to	display	the		
	 value	on	a	graphic	or	to	process	the	value	with	another	component.		

	 In	:	This	is	the	standard	component	input	property	that	you	link	into	from	a	data	source.		
	 For	example,	you	can	link	into	this	property	from	a	control	point	or	a	Schedule	output.	

SRLatch			! 	
Set/Reset	 Latch	 —	 single-bit	 edge-triggered	 data	 storage.	 The	 following	 logic	 applies	 on	 the	
false-to-true	transi>on	of	S	or	R:		
	 If	S	goes	true	and	R	does	not	change,	then	Out	=	true	and	remains	true.	 	
	 If	R	goes	true	and	S	does	not	change,	then	Out	=	false	and	remains	false.	
	 If	both	S	and	R	go	true	on	the	same	scan,	then	Out	=	false	and	remains	false.	

Logic	components		
All	15	of	the	logic	components	process	input	values	and	provide	a	Boolean	output.	Logic	object	
types	vary	by	input	types.		

Seven	types	have	Boolean	inputs:		

And			� 	
And	performs	a	logical	AND	on	all	inputs	and	writes	the	result	to	the	out	property.	It	is	available	
in	 the	 iSMA_control	paleXe.	Table	1	shows	 the	And	object	 truth	 table	when	using	 two	 inputs.	
Table	2	shows	the	And	object	truth	table	if	using	all	four	inputs.	

Table	1.	And	object	truth	table	(2	inputs)	

				� 	

Table	2.	And	object	truth	table	(4	inputs)	

																			� 	
LogicExpr	
LogicExpr	is	Binary	Logic	Object	where	various	Logic	Opera>ons	are	be	performed	on		 	
one/two	Boolean	inputs	based	on	the	operator.	

out	:=	(inA	&	inB)				 when	operator	==	0	(And)	
out	:=	(inA	|	inB)				 when	operator	==	1	(Or)	
out	:=	(inA	^	inB)				 when	operator	==	2	(Xor)	
out	:=	!inA																	 when	operator	==	3	(Not)	
out	:=	!(inA	&	inB)		 when	operator	==	4	(Nand)	
out	:=	!(inA	|	inB)				 when	operator	==	5	(Nor)	

Or			! 	
Or	performs	a	 logical	OR	on	all	valid	 inputs	and	writes	 the	boolean	result	 to	the	out	property.	
The	Or	 is	available	 in	 the	 iSMA_control	paleXe.	Table	3	 shows	 the	Or	object	 truth	 table	when	
using	two	inputs.	Table	4	shows	the	Or	object	truth	table	when	using	all	four	inputs.	NOR	gate	
logic	is	accomplished	by	linking	to	a	Not	object.		

Table	3.	Or	object	truth	table	(2	inputs)	

					� 	 	

Table	4.	Or	object	truth	table	(4	inputs)	

																																																												� 	

Nand			 ! 		
The	Nand	performs	the	opera>on	out	is	equivalent	to	false	if	all	inputs	are	true.	It	is	available	in	
the	iSMA_control	paleXe.	

Nor			 ! 	
The	Nor	performs	the	opera>on	out	is	equivalent	to	true	if	all	 inputs	are	false.	It	is	available	in	
the	iSMA_control	paleXe.	

Not			 ! 	
The	Not	out	 simply	 inverts	 the	Boolean	 logic	value	currently	at	 the	 (single)	object	 input.	 	 It	 is	
available	in	the	iSMA_control	paleXe.	

Xor			 ! 	
Xor	performs	a	logical	XOR	on	all	valid	inputs	and	writes	the	result	to	the	out	property.	Table	6	
shows	the	Xor	object	truth	table	when	using	two	inputs	(typical).	Table	7	shows	the	Xor	object	
truth	table	if	using	all	four	inputs.	

Table	6.	Xor	object	truth	table	(2	inputs)	

		� 	

Table	7.	Xor	object	truth	table	(4	inputs)	

											� 	

Eight	types	have	Numeric	inputs:		

Comparator	
Comparator	performs	a	Numeric	Comparision	of	two	numeric	inputs	and	raises	the		 	
respec>ve	Flags.	

	 equal													 	 :=	(inA	==	inB)	
	 notEqual								 	 :=	(inA	!=	inB)	
	 greaterThan								 :=	(inA	>		inB)	
	 greaterThanEqual		 :=	(inA	>=	inB)	
	 lessThan									 	 :=	(inA	<		inB)	
	 lessThanEqual			 	 :=	(inA	<=	inB)	

ComparatorExpr	
ComparatorExpr	is	Comparator	Object	where	various	Comparator	Opera>ons	are	be		 	
performed	on	two	Float	inputs	based	on	the	operator.	

	 out	:=	(inA	==	inB)		 when	operator	==	0	(Equal)	
	 out	:=	(inA	!=	inB)		 when	operator	==	1	(NotEqual)	
	 out	:=	(inA	>		inB)		 when	operator	==	2	(GreaterThan)	
	 out	:=	(inA	>=	inB)		 when	operator	==	3	(GreaterThanEqual)	
	 out	:=	(inA	<		inB)		 when	operator	==	4	(LessThan)	
	 out	:=	(inA	<=	inB)		 when	operator	==	5	(LessThanEqual)	

Equal			! 	
Equal	performs	the	opera>on	A	==	B.	Numeric.	NaN	values	are	never	equal.	

GreaterThan			� 	

GreaterThan	 performs	 the	 opera>on	 A	 >	 B	 with	 a	 boolean	 result.	 It	 is	 available	 in	 the	
iSMA_control	paleXe.	

GreaterThanEqual			� 	
GreaterThanEqual	 performs	 the	 opera>on	 A	 >=	 B	with	 a	 boolean	 result.	 It	 is	 available	 in	 the	
iSMA_control	paleXe.	

LessThan			! 	
LessThan	performs	the	opera>on	In	A	<	In	B	with	a	boolean	result.	

LessThanEqual			! 	
LessThanEqual	performs	the	opera>on	In	A	<=	In	B	with	a	boolean	result.	

NotEqual			 ! 	
NotEqual	performs	the	opera>on	A	!=	B	with	a	boolean	result.	It	is	available	in	the	iSMA_control	
paleXe.	

Math	components		
Math	 components	 process	 one	or	more	Numeric	 input	 values	 and	provide	 a	Numeric	 output.	
Each	 component	 type	 provides	 a	 specific	math	 func>on	 like	 Add,	 Average,	 Divide,	Minimum,	
Maximum,	Reset,	AbsValue,	and	so	on.	
Math	object	types	vary	by	number	of	inputs	used,	in	addi>on	to	math	opera>on.		
		
The	following	Math	types	perform	an	opera>on	on	one	to	mul>ple	inputs:		

Add			� 	
Add	 performs	 the	 opera>on	 out	 :=	 (InA	 +	 InB	 +	 InC	 +	 InD).	 The	 Add	 is	 available	 in	 the	
iSMA_control	paleXe.	

MathExpr			! 	
MathExpr	is	Object	where	various	Mathema>cal	&	Trigonometric	Opera>ons	can	be		 	
performed	on	one/two	Numeric	inputs	based	on	the	operator.	

	 out	:=	fabs	(in)				 when	operator	=	0	(AbsValue)	
	 out	:=	inA	+	inB			 when	operator	=	1	(Add)	
	 out	:=	acos	(in)				 when	operator	=	2	(ArcCosine)	
	 out	:=	asin	(in)				 when	operator	=	3	(ArcSine)	
	 out	:=	atan	(in)				 when	operator	=	4	(ArcTangent)	
	 out	:=	cos	(in)				 	 when	operator	=	5	(Cosine)	
	 out	:=	inA	/	inB			 when	operator	=	6	(Divide)	
	 out	:=	e	^	in					 	 when	operator	=	7	(Exponen>al)	
	 out	:=	inA!							 	 when	operator	=	8	(Factorial)	
	 out	:=	log10	(in)		 when	operator	=	9	(LogBase10)	
	 out	:=	ln	(in)					 	 when	operator	=	10	(LogNatural)	
	 out	:=	inA	%	inB		 when	operator	=	11	(Modulus)	
	 out	:=	inA	*	inB			 when	operator	=	12	(Mul>ply)	
	 out	:=	-in								 	 when	operator	=	13	(Nega>ve)	
	 out	:=	inA	^	inB			 when	operator	=	14	(Power)	
	 out	:=	round	(in)		 when	operator	=	15	(Round)	
	 out	:=	sin	(in)				 	 when	operator	=	16	(Sine)	
	 out	:=	sqrt	(in)			 	 when	operator	=	17	(SquareRoot)	
	 out	:=	inA	-	inB		 	 when	operator	=	18	(Subtract)	
	 out	:=	tan	(in)				 	 when	operator	=	19	(Tangent)	
	 out	:=	trunc	(in)		 when	operator	=	20	(Truncate)	

Maximum			! 	
Maximum	determines	 the	maximum	value	of	valid	 inputs	and	writes	 that	value	 to	out.	Out	 :=	
max	(InA,InB,	InC,	InD)	

Minimum			 ! 	
Minimum	determines	the	minimum	value	of	valid	inputs	and	writes	that	value	to	out.	Out	:=	min	
(InA,	InB,	InC,	InD).	

MinMaxAvg			 ! 	
MinMaxAvg	 has	 5	Numeric	 output	 slots	 that	 provide	 the	 current	minimum,	maximum,	 count,	
sum	and	average	values	of	2	to	10	linked	Numeric	inputs.	It	is	available	in	iSMA_control	paleXe.	

MulMply			 ! 	
Mul>ply	performs	the	calcula>on	Out	 :=	 InA	*	 InB	*	 InC	*	 InD.	The	Mul>ply	 is	available	 in	 the	
iSMA_control	paleXe.	

The	following	Math	types	perform	an	opera>on	using	two	inputs:		

Divide			! 	
Divide	performs	the	opera>on	out	:=	(in	A	/	in	B).	If	either	input	is	Numeric.NaN,	the	output	will	
be	Numeric.NaN.	

Modulus			 ! 	
Modulus	provides	a	modulus	opera>on	based	on	values	at	its	two	Numeric	inputs.	The	output	is	
the	remainder	of	dividing	the	InA	value	by	the	InB	value.	If	the	InB	value	is	0,	the	output	is	NaN	
(not	a	number).	Modulus	is	available	in	the	iSMA_control	paleXe.	

Power			 ! 	
Power	 performs	 the	 opera>on	 out	 :=	 (InA	 ^	 InB)	 or	 a	 raised	 to	 the	 InB	 power.	 The	 Power	
component	is	available	in	the	iSMA_control	paleXe.	

Subtract			 ! 	
Subtract	performs	the	opera>on	out	:=	(InA	-	InB).	If	either	input	is	Numeric.NaN,	the	output	will	
be	Numeric.NaN.	It	is	available	in	iSMA_control	paleXe.	

The	following	Math	types	perform	an	opera>on	on	a	single	input:		

AbsValue			� 	
AbsValue	performs	the	opera>on	out	:=	abs	(In)	(absolute	value	of	In).	The	AbsValue	is	available	
in	the	iSMA_control	paleXe.	

ArcCosine			� 	
ArcCosine	performs	the	opera>on	out	:=	acos	(inA).	It	is	available	in	the	iSMA_control	paleXe.	

ArcSine			� 	
ArcSine	performs	 the	opera>on	out	 :=	 asin	 (inA).	 The	ArcSine	 is	 available	 in	 the	 iSMA_control	
paleXe.	

ArcTangent			� 	
ArcTangent	 performs	 the	 opera>on	 out	 :=	 atan	 (inA).	 The	 ArcTangent	 is	 available	 in	 the	
iSMA_control	paleXe.	

Cosine			� 	
Cosine	 performs	 the	 opera>on	 out	 :=	 cos	 (in	 A).	 The	 Cosine	 is	 available	 in	 the	 iSMA_control	
paleXe.	

ExponenMal			! 	
Exponen>al	performs	the	opera>on	out	:=	e	^	inA	(e	raised	to	the	inA	power).	

Factorial			! 	
Factorial	provides	a	 factorial	math	output,	based	upon	the	value	present	at	 its	Numeric	 input.	
Only	 the	 integer	 por>on	 of	 the	 input	 value	 is	 evaluated--for	 example,	 either	 value	 of	 1.03	 or	
1.9999	is	evaluated	as	1.	

LogBase	10			! 	
LogBase10	performs	the	opera>on	out	:=	log10	(inA)	(log	base	10	of	inA).	

LogNatural			! 	
LogNatural	performs	the	opera>on	out	:=	ln	(inA)	(log	base	e	of	inA).	

MinMaxAverage			 ! 	
MinMaxAverage	 has	 5	 Numeric	 output	 slots	 that	 provide	 the	 current	 minimum,	 maximum,	
count,	 sum	and	average	values	of	 from	a	 linked	Numeric	 input.	 It	 is	 available	 in	 iSMA_control	
paleXe.	
	 	
NegaMve			 ! 	
Nega>ve	simply	converts	any	input	numeric	to	a	nega>ve	output	value.	Nega>ve	is	available	in	
the	iSMA_control	paleXe.	

Reset			 ! 	
This	component	performs	a	linear	"reset"	on	the	inA	value.	Reset	is	available	in	the	iSMA_control	
paleXe.		
Reset	opera>on	is	defined	by	the	following	four	slots:		
	 Input	Low	Limit	--	must	be	less	than	the	Input	High	Limit		
	 Input	High	Limit	--	must	be	greater	than	the	Input	Low	Limit		
	 Output	Low	Limit	--	may	(or	may	not)	be	greater	than	the	Output	High	Limit		
	 Output	High	Limit	--	may	(or	may	not)	be	greater	than	the	Output	Low	Limit		

		
For	example,	a	Reset	object	is	used	to	establish	a	hot	water	control	setpoint,	based	on	
the	 outside	 air	 temperature	 at	 inA.	When	 the	 outside	 air	 temperature	 is	 0˚F,	 the	 hot	
water	setpoint	is	200˚F.	When	the	outside	air	temperature	is	75˚F,	the	hot	water	setpoint	
is	100˚F.	The	Reset	object	is	configured	as:		

Input	Low	Limit	=	0.0			
Input	High	Limit	=	75.0			
Output	Low	Limit	=	200.0			
Output	High	Limit	=	100.0			

		
Whenever	 the	 inA	 value	 is	 beyond	 the	 input	 limits,	 the	 output	 is	 limited	 by	 the	
corresponding	 output	 limit	 (in	 this	 case,	 200	 at	 0˚F	 or	 below,	 100	 at	 75˚F	 or	 above).	
When	 the	 input	 is	 at	 an	 intermediate	 value,	 the	 output	 scales	 linearly.	 For	 example,	
when	the	outside	air	temperature	is	at	38.2˚F,	the	Reset	output	is	149.1˚F.	

Round			 ! 		
Round	 performs	 the	Mathema>cal	 opera>on	 of	 returning	 the	 nearest	 Integer,	 rounding	 away	
from	zero	in	the	halfway	cases.	

	 out	:=	round	(in)	

Sine			 ! 	
Sine	performs	the	opera>on	out	:=	sin	(InA).	It	is	available	in	iSMA_control	paleXe.	

SquareRoot			 ! 	
SquareRoot	 performs	 the	 opera>on	 out	 :=	 sqrt	 (InA)	 (square	 root	 of	 InA).	 It	 is	 available	 in	
iSMA_control	paleXe.	

Tangent			 ! 	
Tangent	performs	the	opera>on	out	:=	tan(InA).	It	is	available	in	iSMA_control	paleXe.	

Truncate			! 		
Truncate	performs	the	Mathema>cal	opera>on	of	 returning	the	nearest	 Integer,	not	greater	 in	
magnitude	than	the	Input	Float.	

out	:=	trunc	(in)	

Select	components		
A	 select	 object	 allows	 one	 of	 mul>ple	 inputs	 to	 be	 selected	 (passed	 to	 the	 output)	 upon	
selec>on	by	the	value	at	its	"Select"	(Integer)	input.	From	3	to	10	inputs	can	be	specified.		
Note	 that	all	 select	objects	 require	an	 integer	 input	 to	perform	the	selec>on--the	 three	select	
object	types	differ	only	by	the	type	of	input	data	selected	and	passed	to	the	"Out"	slot.		

BooleanSelect			! 	

A	 BooleanSelect	 object	 allows	 one	 of	 mul>ple	 Boolean	 inputs	 to	 be	 selected	 (passed	 to	 the	
output)	upon	selec>on	by	 the	value	at	 its	"Select"	 (Integer)	 input.	From	3	 to	10	 inputs	can	be	
specified.		

Note	that	all	select	objects	require	an	integer	input	to	perform	the	selec>on	by	the	type	of	input	
data	selected	and	passed	to	the	"Out"	slot.	

IntegerSelect			! 	

An	 IntegerSelect	 object	 allows	 one	 of	 mul>ple	 Integer	 inputs	 to	 be	 selected	 (passed	 to	 the	
output)	upon	selec>on	by	 the	value	at	 its	"Select"	 (Integer)	 input.	From	3	 to	10	 inputs	can	be	
specified.		

Note	that	all	select	objects	require	an	integer	input	to	perform	the	selec>on	by	the	type	of	input	
data	selected	and	passed	to	the	"Out"	slot.	

NumericSelect			! 	

A	NumericSelect	 object	 allows	 one	 of	mul>ple	 Numeric	 inputs	 to	 be	 selected	 (passed	 to	 the	
output)	upon	selec>on	by	 the	value	at	 its	"Select"	 (Integer)	 input.	From	3	 to	10	 inputs	can	be	
specified.		

Note	that	all	select	objects	require	an	integer	input	to	perform	the	selec>on	by	the	type	of	input	
data	selected	and	passed	to	the	"Out"	slot.	

Switch	components		
A	switch	object	allows	one	of	two	inputs	to	be	selected	(passed	to	the	output)	upon	selec>on	by	
the	value	at	its	"Select"	(Boolean)	input.	

Note	that	all	switch	objects	require	an	boolean	input	to	perform	the	selec>on--the	three	switch	
object	types	differ	only	by	the	type	of	input	data	selected	and	passed	to	the	"Out"	slot.		

BooleanSwitch			! 	

A	BooleanSwitch	object	selects	between	two	Boolean	 inputs	based	upon	the	boolean	value	at	
the	Boolean	input	'In	Switch’.	

Note	 that	 all	 select	 objects	 require	 an	 boolean	 input	 to	 perform	 the	 selec>on	 by	 the	 type	 of	
input	data	selected	and	passed	to	the	"Out"	slot.	

IntegerSwitch			! 	

A	IntegerSwitch	object	selects	between	two	Integer	inputs	based	upon	the	boolean	value	at	the	
Boolean	input	'In	Switch’.	

Note	 that	 all	 select	 objects	 require	 an	 boolean	 input	 to	 perform	 the	 selec>on	 by	 the	 type	 of	
input	data	selected	and	passed	to	the	"Out"	slot.	

NumericSwitch			! 	

A	NumericSwitch	object	selects	between	two	Numeric	inputs	based	upon	the	boolean	value	at	
the	Boolean	input	'In	Switch’.	

Note	 that	 all	 select	 objects	 require	 an	 boolean	 input	 to	 perform	 the	 selec>on	 by	 the	 type	 of	
input	data	selected	and	passed	to	the	"Out"	slot.	

Timer	components		
Timer	Components	include	2	delay	types,	and	a	OneShot	and	a	Timer	component.	

BooleanDelay				
The	BooleanDelay	component	provides	a	way	to	delay	the	change	of	a	boolean	"out"	property	
value	by	configuring	an	associated	"Delay"	property.	Delay	proper>es	are	provided	for	on	(true)	
and	 off	 (false)	 statuses	 and	 are	 labeled	 "On	 Delay"	 and	 "Off	 Delay",	 respec>vely.	 The	 delay	
applies	to	any	transi>on	(status	change	from	on	to	off	or	off	to	on)	at	the	component's	boolean	
input.	Both	delay	>mes	are	configurable	in	terms	of	hours,	minutes	and	seconds.	It	is	available	in	
the	iSMA_control	paleXe.	
BooleanDelay	component	proper>es	include	the	following:									

	 In	:	Typically,	you	set	this	property	by	linking	a	boolean	out	value	into	it.	You	can			
	 manually	configure	the	default	state	to	be	true	or	false,	so	that	when	no	value	is	linked		
	 into	this	property,	the	default	value	is	used.	This	property	value	is	passed	to	the	Out		
	 (aser	any	On	Delay	or	Off	Delay)	whenever	there	is	a	change	in	this	property.		

	 On	Delay	:	This	property	allows	you	to	set	the	amount	of	>me	(in	hours,	minutes,	and		
	 seconds)	that	you	want	to	expire	before	sending	a	true	(On)	value	to	the	Out	property.		
	 Time	begins	to	expire	at	the	moment	that	a	change	in	the	In	property	occurs	(a		 	
	 transi>on	from	false	or	null	to	true).		

	 Off	Delay	:	This	property	allows	you	to	set	the	amount	of	>me	(in	hours,	minutes,	and		
	 seconds)	that	you	want	to	expire	before	sending	a	false	(Off)	value	to	the	Out	property.		
	 The	>me	begins	at	the	moment	that	a	change	in	the	In	property	occurs	(a	transi>on		
	 from	True	to	False	or	False	to	true).		
		 On	Delay	AcMve	:	This	read-only	property	shows	whether	or	not	the	On	Delay	>me	is		
	 ac>vely	coun>ng	down	to	expira>on.	This	(normally	false)	value	changes	to	true	any>me	
	 that	a	transi>on	from	false	to	true	occurs	at	the	In	property	and	stays	at	true	un>l	any		

	 Off	Delay	>me	is	expired.	If	the	On	Delay	value	is	set	to	"0",	then	this	value	does	not		
	 change	to	true.		
		 Off	Delay	AcMve	:	This	read-only	property	shows	whether	or	not	the	Off	Delay	>me	is		
	 ac>vely	coun>ng	down	to	expira>on.	This	(normally	false)	value	changes	to	true	any>me	
	 that	a	transi>on	from	true	to	false	occurs	at	the	In	property	and	stays	at	true	un>l	any		
	 Off	Delay	>me	is	expired.	If	the	On	Delay	value	is	set	to	"0",	then	this	value	does	not		
	 change	to	true.		
		 Out	:	This	property	has	true,	false	op>ons	available.	These	values	are	set	at	the	end	of		
	 any	On	Delay	or	Off	Delay	to	reflect	the	In	property	value.		

OneShot			 ! 	
The	OneShot	component	provides	a	single,	temporary,	boolean	output	for	a	specified	dura>on	
(as	set	 in	 the	Time	property).	A	OneShot	ac>on	occurs	with	a	False-to-True	value	 transi>on	at	
the	In	property,	or	with	an	invoked	Fire	ac>on.	When	either	of	these	condi>ons	occurs,	the	Out	
property	 value	 is	 set	 to	True	and	 the	Out	Not	property	 value	 is	 set	 to	 False	 for	 a	>me	 that	 is	
equal	 to	 the	 value	 of	 the	 Time	 property.	 When	 the	 >me	 expires,	 these	 values	 revert	 to	 the	
previous	(default)	values.		
The	following	types	of	proper>es	are	used	in	the	OneShot	component:		

In	 :	 Typically,	 you	 set	 this	 property	 by	 linking	 a	 boolean	 Out	 value	 into	 it.	 You	 can	
manually	configure	the	default	state	to	a	boolean	value,	so	that	when	no	value	is	linked	
into	 this	 property,	 the	 default	 value	 is	 used.	 This	 property	 value	 is	 passed	 to	 the	
component's	Out	property	for	the	amount	of	>me	set	in	the	Time	property.		
Time	:	The	value	of	this	property	determines	how	long	the	Out	and	Out	Not	proper>es	
hold	their	"one-shot"	values.	
Out	 :	 This	property	 value	displays	 the	 current	 value	 that	 changes	with	a	 False	 to	True	
transi>on	at	the	In	property	value	or	a	"Fire"	ac>on.	Aser	a	OneShot	is	triggered	and	the	
Time	value	period	expires,	this	value	returns	to	the	default	(False)	value.	
Out	Not	:	This	property	has	true	or	false	op>ons	available.	The	Out	value	change	with	a	
False	 to	 True	 transi>on	 at	 the	 In	 property	 value	or	 a	 "Fire"	 ac>on.	Aser	 a	OneShot	 is	
triggered	 and	 the	 Time	 value	 period	 expires,	 this	 value	 returns	 to	 the	 default	 (True)	
value.	

NumericDelay				
The	NumericDelay	component	provides	a	way	to	delay	the	change	of	a	numeric	"out"	property	
value	 by	 configuring	 an	 associated	 "Delay"	 property.	 The	 delay	 applies	 to	 any	 change	 at	 the	
component's	 numeric	 input.	 The	 delay	 >me	 is	 configurable	 in	 terms	 of	 hours,	 minutes	 and	
seconds.	It	is	available	in	the	iSMA_control	paleXe.	
NumericDelay	component	proper>es	include	the	following:									

	 In	:	Typically,	you	set	this	property	by	linking	a	numeric	out	value	into	it.	You	can			
	 manually	configure	the	default	state	to	be	true	or	false,	so	that	when	no	value	is	linked		
	 into	this	property,	the	default	value	is	used.	This	property	value	is	passed	to	the	Out		
	 (aser	Delay)	whenever	there	is	a	change	in	this	property.		

		 Delay	:	This	property	allows	you	to	set	the	amount	of	>me	(in	hours,	minutes,	and		
	 seconds)	that	you	want	to	expire	before	sending	the	In	value	to	the	Out	property.	Time		
	 begins	to	expire	at	the	moment	that	a	change	in	the	In	property	occurs.		
		 Delay	AcMve	:	This	read-only	property	shows	whether	or	not	the	Delay	>me	is	ac>vely		
	 coun>ng	down	to	expira>on.	This	(normally	false)	value	changes	to	true	any>me	that	a		
	 change	in	the	In	property	and	stays	at	true	un>l	any	Delay	>me	is	expired.	If	the	Delay		
	 value	is	set	to	"0",	then	this	value	does	not	change	to	true.		
		 Out	:	This	property	is	a	numeric	output.	These	values	are	set	at	the	end	of	any	Delay	to		
	 reflect	the	In	property	value.	

Timer			 ! 	
Timer	outputs	a	pulse	for	the	configured	amount	of	>me	"in"	is	used	to	fire	the	>mer:	
	 if	low,	out	is	forced	to	false	
	 if	high,	out	=	1	un>l	>mer	reaches	">me"	seconds			
Alterna>vely,	the	pulse	can	be	fired	from	the	"Start	Timer"	ac>on	if	in	is	not	linked.	Following	are	
the	proper>es	for	Timer:	

Out	:	A	>med	pulse	output.			
Run	:	Used	to	fire	the	>mer	on	transi>on	from	false	->	true			
Time	:	Desire	dura>on	of	the	output	pulse.			
LeQ	:	Remaining	>me	before	the	output	transi>on	from	true	->	false	

UMl	components		
U>l	Components	range	from	a	Counter	object	with	boolean	input	and	a	numeric	output	(counts	
ac>ve	transi>ons)	to	a	 logical	AND/OR/XOR	on	the	bit	equivalent	of	the	Numeric	value	against	
the	bit	equivalent	of	its	Numeric	"Mask"	slot	value.	

U>l	components	also	 include	"generator"	components	useful	 for	 simula>on/logic	 tes>ng,	 such	
as	the	SineWave,	Random	and	Ramp	(each	with	a	numeric	output)	and	Mul>Vibrator	(boolean	
output).	

Counter			� 	
The	Counter	 component	will	 count	boolean	 inac>ve	 to	ac>ve	 transi>ons.	 It	 supports	 coun>ng	
up,	 coun>ng	 down,	 presemng,	 and	 clearing.	 The	 Counter	 is	 available	 in	 the	 iSMA_control	
paleXe.	The	following	sec>ons	provide	more	details:		
The	Counter	component	includes	the	following	proper>es:		
	 Count	Up	:	This	is	a	Boolean	input.	When	this	input	makes	inac>ve	to	ac>ve	transi>on		
	 the	value	of	the	Out	property	increments	by	the	Count	Increment	value.		
		 Count	Down	:	This	is	a	Boolean	input.	When	this	input	makes	inac>ve	to	ac>ve	transi>on	
	 the	value	of	the	Out	property	will	be	decremented	by	the	Count	Increment.		
		 Preset	In	:	This	is	a	Numeric	input	which	will	be	set	in	the	Out	property	when	the	Preset		
	 ac>on	is	invoked.	
		 Clear	In	:	This	is	a	Numeric	input	which	will	be	set	in	the	Out	property	when	the	Clear		
	 ac>on	is	invoked.	
		 Count	Increment	:	This	is	the	value	that	the	Out	property	will	change	for	a	single	count		
	 up	or	count	down	ac>ve	transi>on.		

The	Counter	component	includes	the	following	ac>ons:	

	 Preset	:	Preset	ac>on	when	invoked,	the	value	of	the	Out	property	will	be	set	to	presetIn	
	 value.	

		 Clear	:	Clear	ac>on	when	invoked,	the	value	of	the	Out	property	will	be	set	to	clearIn		
	 value.	

MulMvibrator			 ! 	
Mul>Vibrator	provides	 an	oscilla>ng	binary	pulse	output	 (Boolean)	with	a	period	 configurable	
from	1s,	and	a	duty	cycle	configurable	from	0	to	100%.	It	is	available	in	the	iSMA_control	paleXe.	

NumericBitAnd			! 	
NumericBitAnd	performs	a	 logical	AND	on	the	bit	equivalent	of	the	Numeric	"In"	value	against	
the	 bit	 equivalent	 of	 its	Numeric	 "Mask"	 slot	 value.	 It	may	 be	 useful	 in	 cases	where	 boolean	
informa>on	is	mapped	into	integer	values.	It	is	available	in	the	iSMA_control	paleXe.	
	 	
NumericBitOr			! 	
NumericBitOr	performs	a	logical	OR	on	the	bit	equivalent	of	the	Numeric	"In"	value	against	the	
bit	 equivalent	 of	 its	 Numeric	 "Mask"	 slot	 value.	 It	 may	 be	 useful	 in	 cases	 where	 boolean	

informa>on	is	mapped	into	integer	values.	It	is	available	in	the	iSMA_control	paleXe,	along	with	
the	closely-related	NumericBitAnd	and	NumericBitXor.	
As	 an	 example,	 some	 manufacturers	 mul>plex	 binary	 data	 into	 a	 single	 numerical	 point	 by	
conver>ng	the	bits	 from	hexadecimal	 to	decimal	 format.	To	obtain	 the	status	of	 the	 individual	
binary	data,	the	number	must	be	converted	back	from	decimal	to	hex	format.	Each	digit	of	the	
hex	 number	 represents	 a	 par>cular	 binary	 parameters	 state	 (0	 =	 false,	 1	 =	 true).	 The	
NumericBitOr	object	converts	a	Numeric	input	to	a	hex	value,	and	compares	it	against	the	mask	
value.	Any	digits	with	a	value	of	1	in	the	mask	or	the	input	will	result	in	a	corresponding	value	of	
1	in	the	same	digit	of	the	output.	Any	value	on	the	output	slot	greater	than	1	indicates	that	at	
least	one	of	the	binary	parameters	is	true.	

NumericBitXor			! 	
NumericBitXor	performs	a	logical	XOR	on	the	bit	equivalent	of	the	Numeric	"In"	value	against	the	
bit	 equivalent	 of	 its	 Numeric	 "Mask"	 slot	 value.	 It	 may	 be	 useful	 in	 cases	 where	 boolean	
informa>on	is	mapped	into	integer	values.	It	is	available	in	the	iSMA_control	paleXe.	
As	 an	 example,	 some	 manufacturers	 mul>plex	 binary	 data	 into	 a	 single	 numerical	 point	 by	
conver>ng	the	bits	 from	hexadecimal	 to	decimal	 format.	To	obtain	 the	status	of	 the	 individual	
binary	data,	the	number	must	be	converted	back	from	decimal	to	hex	format.	Each	digit	of	the	
hex	 number	 represents	 a	 par>cular	 binary	 parameters	 state	 (0	 =	 false,	 1	 =	 true).	 The	
NumericBitXor	object	converts	a	Numeric	 input	to	hex	value	and	compares	it	against	the	mask	
value.	Each	digit	is	analyzed	using	exclusive	OR	(XOR)	logic,	semng	the	corresponding	digit	value	
to	either	a	1	or	0.	

Ramp			! 	
Ramp	provides	a	Numeric	Out	with	a	linear	ramping	output.	Slots	define	the	Period,	Amplitude	
and	Offset.	It	is	available	in	iSMA_control	paleXe.	

Random			! 	
This	component	can	be	used	to	generate	random	numbers.	The	output	is	derived	by	mul>plying	
a	 random	number	 (that	 is	greater	 than	0	but	 less	 than	1)	>mes	a	variable	"mul>plier"	plus	an	
offset.	It	is	available	in	the	iSMA_control	paleXe.		
Setup	of	the	Random	component	involves	semng	the	following	proper>es:		
	 MulMplier	:	This	is	a	double	value	that	is	used	to	mul>ply	by	the	random	number	(the		
	 random	number	is	>=0.0	but	<1.0).	The	mul>plier	is	set	to	1.0	by	default.		
	 Offset	:	This	is	the	posi>ve	or	nega>ve	distance	from	zero	that	the	wave's	amplitude	is		
	 centered	on.	The	default	offset	value	is	50.	
	 	
SineWave			 ! 	
SineWave	generates	a	sine	wave	as	a	Numeric	out.	It	is	available	in	iSMA_control	paleXe.	

Frequency			� 		
Frequency	object	calculates	a	pulse	input	frequency.	

Hysteresis			� 		
Hysteresis	sets	on/off	trip	points	to	an	input	variable.		There	are	two	internal	floats	called	Rising	
Edge	and	Falling	Edge	which	are	configurable.			

If	risingEdge	>	fallingEdge,	then	out	behaves	"normally",	ie	
	 out	:=	true		when	in	rises	above	risingEdge	
	 out	:=	false	when	in	falls	below	fallingEdge	
If	risingEdge	<	fallingEdge,	then	out	behaves	"inverted",	ie	
	 out	:=	false	when	in	rises	above	fallingEdge	
	 out	:=	true		when	in	falls	below	risingEdge	
If	risingEdge	==	fallingEdge,	this	object	behaves	as	a	simple	comparator,	
	 out	:=	true		when	in	>	Rising	Edge	

Limiter			! 		
Limiter	object	restricts	the	output	based	on	the	input	between	lowLimit	and	highLimit.	
HighLimit	and	LowLimit	are	configurable	floats	:	
	 out	:=	highLimit	when	in	>	highLimit	
	 out	:=	lowLimit		when	in	<	lowLimit	
	 out	:=	in									 when	lowLimit	<	in	<	highLimit	

Linearize			! 	
Linearize	—	piecewise	lineariza>on	of	a	float.		
For	piecewise	lineariza>on	of	a	nonlinear	input,	there	are	ten	pairs	of	x,y	parameters	that	must	
be	configured	into	this	component.		The	x,y	pairs	indicate	points	along	the	input	curve.		For	an	x	
value	 of	 the	 input,	 there	 should	 be	 a	 corresponding	 y	 value	 of	 the	 output.	 	 For	 input	 values	
between	these	points,	the	component	will	es>mate	the	output	based	upon	the	linear	equa>on:	
	 Converts	a	table	of	values	into	a	curve	using	linear	interpola>on	between	the	values.	
	 The	x,y	pairs	indicate	points	along	the	input	curve,	for	an	x	value	of	input	there	should		
	 be	a	corresponding	y	value	of	output.	
	 Individual	slope/intercept	constants	are	computed	between	the	x's	and	y's	using	the		
	 formula	y	=	mx	+	b,	where	m	=	ym	-	yn/xm	-	xn.	

	 If	in	is	not	in	the	range	of	x0	to	x9,	then	output	is	set	to	"nan"	

	 Note	that	slope	may	be	posi>ve	or	nega>ve,	and	is	indicated	by	comparison	of	x1	and		
	 x0.	
	 Posi>ve	if	x1	>	x0		
	 Nega>ve	if	x1	<	x0	

	 out	:=	(m	*	in)	+	b	where	m	is	the	slope	between	the	adjacent	points	and	b	is	the	Y		
	 intercept.	

TempConversion			! 		
TempConversion	is	a	Converter	object	to	convert	Temperature	from	one	unit	to	another.	
	 out	:=	in		 	 												 								when	in	=	celsius	&	out	=	celsius	
	 out	:=	(in	-	32.0)	*	(5.0/9.0)								 								when	in	=	celsius	&	out	=	fahrenheit	
	 out	:=	in	+	273.0		 												 								when	in	=	celsius	&	out	=	kelvin	

	 out	:=	(in	*	1.8)	+	32.0	 																										when	in	=	fahrenheit	&	out	=	celsius	
	 out	:=	in	 	 												 								when	in	=	fahrenheit	&	out	=	fahrenheit	
	 out	:=	(in	*	1.8)	+	32.0	+	273.0			 								when	in	=	fahrenheit	&	out	=	kelvin	

	 out	:=	in	-	273.0		 								when	in	=	kelvin	&	out	=	celsius	
	 out	:=	((in	-	273.0)	-	32.0)	*	(5.0/9.0)							when	in	=	kelvin	&	out	=	fahrenheit	
	 out	:=	in	 	 	 									when	in	=	kelvin	&	out	=	kelvin	

UpDown			 ! 		
The	UpDown	component	will	count	based	on	the	countIncrement	property.	It	supports	coun>ng	
up,	coun>ng	down,	presemng,	and	clearing.	

out	:=	out	+	countIncrement			 when	mode	=	true	(Up	Mode)	
out	:=	out	-	countIncrement			 when	mode	=	false(Down	Mode)	
out	:=	No	Change														 when	mode	=	null	(Disable)	
out	:=	presetValue												 when	preset	ac>on	is	fired	
out	:=	0.0																			 	 when	clear	ac>on	is	fired

